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The classical theories for turbulent shear flow are the momentum
transfer theory of Prandtl, the vorticity transfer theory of Taylor, and
the similarity theory of Von K&&n. The two transfer theories both
involve a mixture length, which must be given by an additional assumption.
On the other hand, the similarity theory is a more determinate scheme,
because it makes a more definite hypothesis about the nature of the turbu-
lent fluctuations. Goldsteiri,however, introduced an alternative form
of the similarity theory. A great amount of mrk has been done to
evaluate the relative merits of these three theories.

Further investigation into the nature of turbulent motion is, however,
done largely in connection with the simpler ca,seof isotropic turbulence.
In this field, much recent progress has been made, particularly following
the concept of Kolmogoroff. The concept of similarity also plays a
dominant role. Since Kolmogoroffts theory is also applicable to shear
flow, it is natural that one should reexamine the similarity theory of
Von I&m6n by using modern concepts. This is the main purpose of the
present investigation.
is supported by modern

It is fo-ti that the original.f&n-of the theory
concepts.

INTRODUCTION

The concept of similarity was first introduced byVon K&&n in 1930
(reference 1). Even at the very beginning, he realized that it was not
possible to have complete similarity, including both the components of
fluctuation essentially free from viscous’forces and those largely influ-
enced by viscous forces. It was Taylor (reference 2), however, who
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2 NACATN 2541

first made a more penetrating analysis into this question in connection
with isotropic turbulence. He introduced a macroscale of turbulence Z
‘and a microscale X. He also fully discussed, both theoretically and
experimentally,how two turbulent fields may be similar in all the large
eddies, which contain practically all the energy, and yet differ com-
pletely in their rates of dissipation, which are governed chieflyby
the small eddies hating a negligible contribution to the total energy.
In particular, he gave the relation

(1)

for the energy dissipation c in terms of the scales of turbulence, its
intensity u’, and the kinematic-tiscosity coefficient V. This rela-
tion shows clearly that full similarity cannot be possible in general.

A further advance in this direction was made by Kolmogoroff (refer-
ence 3). Accordimg to his concept, for large Reynolds numbers of turbu-
lence, as defined by RX = u’X/V, .the small eddies are independent of

the behavior of the large eddies, except to the extent that they supply
the energy to be dissipated. There are then only the two parameters e
and v for the viscous range. From dimensional arguments, Kol.mogoroff
introduced the characteristic velocity v and the characteristic scale
q defined, respectively, by

(2)

In terms of the spectrum of turbulence, the high (spatial) frequency
components are dependent only on v and q. By assuming that the lower
end of this range is independeti of V explicitly, one arrives at the
spectrum

(3)

where K is the wve
(reference 4) and was
Heisenbe-rg(reference

number. This relation was first givenby Obukhoff
found independently later by Onsager (reference 5),
6), and Von Weizs%cker (reference 7).

.
.

—



NACA TN 2541 3

The idea that the low-frequency range takes care of almost all of
the energy and that the high-frequency range takes care of almost all of
the dissipation has been fully demonstrated byvon ~~n ad Lin (refer-
ences 8 and 9). ‘It is found that, in either case, the unimportant part

to the important part is of the order of Rx-m (where m is some p08i-

tive nuriber)and is consequently negligible for large Reynolds numbers
of turbulence. The analysis was made by evaluating the integrals

(4)

for
for
for
and

energy and dissipation, assuming the characteristic quantities V, 7
the low-frequency range and the characteristic quantities v,

1the high-frequency range and using Taylor’s relation (equation 1))
the Olmkoff spectrum formula (equation (3)).

This kind of analysis is nowueed to remove a difficulty raised by
Goldstein in his -lysis of Von K&&n’s similarity theory (reference-lO)
Goldstein showed that there are at least two ways of applying the simi-
larity theory, one analogous to the momentum transfer theory (the
T-theory) as given originally by VOn K&m&, and the other analogous to
the vorticity transfer theory (the M-theory). Byan analysis of the
relative importance of the high-frequency and low-frequency components,
it is possible to show that the T-theory is a logical consequence of
Von Kdrm&’s similarity concept, while the M-theory does not follow
directly. This kind of investigation also shows that the usual discus-
sion of the similarity theory needs some modification, although the
final conclusions are not altered.

It is the purpose of the present pper to reexamine critically
Von K&&n’s similarity theory for incompressible flows by using modern
concepts in order to provide a basis for extension and application of the
theory to compressible flows. In references 11 and 12 turbulent boundary
layer over a flat plate in compressible flow is treated in the same sptiit.

!.
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THE cIAssIcALsIMnARrryTHEoKroFvomdRMh

It seems convenient to hegin with a brief sketch of the original
similarity theory of Von K&&n, together with Goldstein’s discussion
of its difficulties and his alternative suggestion (the M-theory).
Remarks will then be made from the present point of view, leading to
the fuller discussions of the next section.

Von K&&n considered a steady two-dimensional mean flow and made
the following hypotheses (see reference 10): (1) The turbulence mech-
anism is essentially independent of the viscosity of the fluid (except
in the viscous layer near the walls); (2) In comparing the turbulence
mechanisms at two different points, consideration of the fields of
turbulent flow may be restricted to the hmediate neighborhoods of these
points; (3) The turbulence flow patterns at different points are similar
(relative to frames of reference moving with the mean velocities at the
points) sd. differ only in Scales of length and time (or velocity). On
the basis of these hypotheses (the validity of which will be examined
later), the following development of the theory may be made. (See
appendix A for definitions of important symbols.)

Consider a two-dimensional pirallel mean motion with velocity U(y)
in the direction of the x-axis. If (U,V,W) are the turbulent
components and p is the pressure, the l?avier-Stokesequations

&loCity
are

1(5)

.
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lMCA TN 2541 5

and the equation of continuity is

au+av+&=~-
ax by az

According to the first assumption the term in v may be neglected. One
may now differentiate the set of equations (5) and combine the resultant
equations to yield the equations for the turbulence vorticity components
(g,v,g). The usual derivation is based on these vorticity equations.

From the present point of view, the neglect of viscosity means that
the “low-frequency”components of the turbulent fluctuations are being
considered. It is known, however, that the “high-frequency”components
of the vorticity fluctuations are more important. It is consequently
difficult to justify the neglect of viscosity from the vorticity equation,
as it is usually done. Even the neglect of viscosity from the original
Navier-Stokes equations (5) requires a careful examination. These points
will be discussed more fully in the next section.

To proceed tith the derivation, take the origin at the point P
under consideration and axes moving with the mean velocity at P, so
ttit U = O at the origin. The assumption is introduced that only the
immediate neighborhood ~f
their values are taken at
Taylor expansion is taken,

velocity are introduced by

P may be considered: For dU/dy, d%]d$,
P, while for U the first term only of the
namely, Y(@Y)p. The scales of length and

writing

x= 1% t= 1~/A s

Y = 17 u = A%

Z=22 vsA~

so that

-=a~.a~Where k q ~j and SO forth. Substituting these into the equations

— —. -— —.— ——.—— — .— ——. ——
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for vorticity and requiring them to be independent of the position of
the origin and of the values of dU/dyj d2U/d# there, oae obtains ~

au
A = Constant Z —

dy

IdU d2UZ = Constant ——
dy dy2

The Reynolds shearing stress at different points
—

T = -p~v = -pA2~ and is therefore proportional
if 2 is multiplied by a suitable constant, there may, when signs are
regarded, be written

of the fluid is

to p22(dU/dy)2; and,

.

2 tl IdU d%
‘Kldy~ .

The average state of affairs under consideration is essentially indepen-
dent of x and z, and the rate M at which x-momentum is communicated

.

to unit volume is

M= d(-pti)/dy

= -(@2/2) d(%
)

and is therefore proportional to p2(dU/dy)2
If 2 is multiplied by a suitable constant,

M = p22,dU d2U——
dy dy2

H Idud2Ul=% —
dy dy2

or to p22( dU/dy)(d2U/d~) .
there may therefore be written

.——- .—.—.—...
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Notice also that M = P?’$,.ifthe average state of affairs is indepen-
dent of x. Thus, the first alternative, the T-theory given by Von K&m&,
is formally related to the momentum transfer theory, while the second
alternative, the M-theory given by Goldstein, is formally related to the
vorticity transfer theory, although the basic concept of the similarity
theory is essentially different from a transfer theory.

The above derivation is essentially the one used by Goldstein, the
only difference being that he started with the vorticity equations
directly. The original derivation of Von K&& is made by a considera-
tion of two-dimensional fluctuations, which is sufficient to provide the
essential steps. In Goldstein’s paper, there are also an extension of
the theory to the flow through a pipe and a critical discussion of the
validity of the theory. His investigations show that in the axially
symmetrical case, it is impossible to have a shple similarity as that
in the two-dimensional case if terms of the same order of magnitude are
all kept. This becomes obvious when the radius of curvature of the “
surface of constant velocity is recognized as an additional parameter
affecting the length scale for a local similarity. He also fetid that
the velocity distribution from the T-theory agrees better with the
experiments for flow between parallel planes, while the M-theory appears
to be more satisfactory for pipe flow.

Another generally recognized difficulty with the similarity theory is
the following. As a consequence of the tlneory,the ratios
—— .
.2: #: #: ~: ~: = should remain constants. In a channel, this is
found to be a good approximation only for points not too close to either
the wall or the center line.

To summrize, the following unsatisfactory points in the similarity
theory have been discussed:

(a) There is nothing in the original theory to decide between the
T-theory and the M-theory and any other alternative obtained, say, by
an application of the theoryto the calculation of a2T/a#.

(b) It cannot be etiended to cases other than the original case of
two-dimensional parallel flows.

(c) The ratios y2 : ~ and so forth are not constants near the center
of the channel or near the boundary.

(d) In addition, there is’the difficulty in applying the theory to
flows with a point of inflection in the velocity profile.

(e) Again, the scale Z turns out to be only moderately small in
most cases.

.
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8 NACA TN 2541

It must be noted that most of the difficulties are limitations which “
do not besr on the basic concept of the theory. The final form of the
theory is applicable only when the scale maybe expected to be determined

by dU/dy and d%J/dfi. This is obviously not the case in wakes or in
the central part of the channel. This is also the reason why the axially
symmetrical case cannot be treated. The presence of another length scale
makes similarity unlikly. Near the boundary, similarity might also break
down as soon as the scale is comparable with the distance from the
boundary.’

Thus, the essential difficulties are (a) and (e) discussed above if
one limits oneself to flows through channels and in the boundary layer.

It is to be recognized that the whole boundary layer or the channel
should be regarded as an “organic” field of motion. One might even
describe the tuibulent motion as a nonlinear oscillation superposed over
a field of flow. Thus, any attempt to “localize” the theory, such as is
done in the similarity theory and to a certain extent in the transfer
theories, is at best a rough approximation. One is faced with the dilemm
of either treating each individual case separately with proper emphasis
on the influence of the boundary conditions or being satisfied with an
approximate theory hating a fairly general applicability. The latter
course has often been taken.

The only remaining difficulty (a) is to be settled by a critical
examination of the concept of similarity from the standpoint of recent
developments of the statistical theory of turbulence. It will be seen
that th basic concept of Von
form of the theory (T-theory)
tives (M-theory, etc.).

CRITICAL DISCUSSION OF

OF MODERN

l@&6ns~ similarity prefers the original
to any theory based on higher-order deriva-

SIMILARITY CONCEPI’FROM

STJflZSTICALTHEORIES

STANDPOINT

The concept of the similarity theory in shear flow will nowbe
formulated and it will be shown how it is related to the concept of
similarity developed-in the statistical theory of isotropic turbulence.
The concepts developed from the statistical theory will thenbe applied
to the present problem to show that the M-theory does not follow from
Von K&&n’s concept of nonviscous similarity in shear flow.

General concept of similarit~.- As discussed above, the similarity
of the large-scale eddies (which are responsible for transfer) is at
best a rough approximation. The similarity of the small eddies (which

——...—. .
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are responsible for the energy dissipation) is however a much closer
approximation at very large Reynolds numbers of turbulence. According .
to the concept of Kolmogoroff, this part of the turbulent fluctuation
will depend only on the kinematic viscosity coefficient v and the rate
of energy transferred to these scales from larger scales. Furthermore,
this pm-t of turbulent motion is isotropic and has a universal character
independent, say, of the amount of shear in the main flow. The rate of
energy transfer is approximately the same as the total rate of dissipa-
tion G. The order of a~curacy of such approximations has been estimated

by Von K&&n and M (references 8 and 9). In other words, in the case
of shear flow, there is a production of turbulent energy from main motion
by the usual transfer mechnism (at a scale of Z = KU~/U”, say). Tbis
large-scale turbulence breaks down into motions at smaller scales and
eventually passes into the viscous range to be dissipated into heat. The
rate of transfer may be estimated, say, by Tsylor’s formula. These lsrge-
scale motions, being produced directly from the mean motion, must depend
on their characteristics. According to the concept of Von K&m6n, the
turbulent fluctuations in tkl.srange have a universal structure, with a
length scale Z = Ku’/u” and a velocity scale UJ’. Thus, two regimes
of similarity are visualized: (a) The large-scale similarity of
Von K&rm6n and (b) the small-scale similarity of Kolmogoroff. The first
range is anisotropic and contributes to the shear: the second rue is
is~ropic and con~ributes only to t e di sipation~ The transitio~

?7probably has an ener~ spectrum 62 3R-5 3 with decreasing amount
Shesr.

This picture-of similarity is analogous to the one visualized
Von K&&n and Lin (references 8 and 9) for the intermediate stage

range
of

by
of decsy

of isotropic turbulence. There, the l&ge-scale eddies are also-isotropic;
having a scale determined by the Loitsians@ invariant. It must be
remarked that the establishment of an equilibrium or qusi-equilibrium
state for large-scale motions takes a long time. Thus, it may be sub-
jected to doubt whether the idealized picture thus visualized can actually
occur for decaying turbulence. On the other hand, in the case of shear
flow, a stationary system being considered, the condition ia more conducive
to the establishment ofVon K&rmfnts similarity.

With this genez%l concept of similarity in mind, the classical theory
of similarity for shear flow may now be examined with the help of results
developed for isotropic turbulence. In the first place, one may examine
the orders of magnitude of len@h, velocity, and vorticity for the eddies
of large scales and snmll scales.

.

.
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For

For

large-scale motions,

Length scale

Velocity scale

Vorticity scale

small-scalemotions}

Length scale

Velocity scale

Vorticity scale

/Zzlyu”

v’” 2U’

v/2 - u’

II= (V3/~)1’4=Numberx 2~-3’2
-v= (Ve)l’4= Nuniberx VRX-1/2

~ = (V/G)l/2 = Number X (V/2)R?&

NACA TN 2541 ‘

(7)

(8)

where RA is the Reynolds number of turbulence and is usually very

large.

These order-of-magnitude relations will nowbe applied to the
development of the similarity theo~. In particular, the rollowing
two points willbe considered:

(a) The neglect of the nents fr~ the ewtions for
turbulent fluctuation

(b) The relative plausibilityy of the T-theory and the M-theory

In making these considerations, the low-frequency and the high-frequency
components will be considered as behating independently in a linear
equation. For
by the product
low frequency,
product of one
quency. ~s,

notiinear terms, low-frequency c~onents can be obtained
of two terms both of the high frequency or botlrof the
while high-frequency components canbe obtained by the
term of the high frequency and one term of the low fre-
if one rites

U=u z+%
(9)

.

.
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where UZ denotes the low-frequency components, and ~, the high-

frequency components, then in

U2 .

the low-frequency components

I-1

(lo)

come from Uz2 and %2, while the high-

frequency components come from uz~ and’ %2.

Since uh <<”~j it is.seen that U2 maybe approximated by U22.

Thus, in the left-hand side of any on: of equations (5), one is justified
in putting a subscript Z to every fluctuating quantity, if the low-
frequency components of the whole left side are desired. The right-hand
side is linear, and hence one can again consider the low-frequency com-
ponents separately. For these, the viscous dissipation is lmown to be

negligible (as may be verified by noting that v Au x vV/Z2 is small

compared with &(uu) when VZ/V is large). Consequently, Von K&m&n’s

original assumption of neglecting v is justified.

The equation of continuity (6) iS linear and can therefore be
considered separately for components of low and high frequencies.

It is remarked that the above discussion canbe carried through
only when equations (5) sre put into the form given. If the left
sides of equations (5) were written h the form

(11)

the neglect of the influence of
frequency components would have
term

the high-frequency components on the low-
been dubious. Consider, for example, the

auz auh kh
‘h ~ ‘VXF ‘vh~ (12)

—. — .— . ..
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The low-frequency

Now, by equations

auz auh
components are given by Vz — as well as by Vh —.

ay ay
(7) and (8),

2 1/2
‘%

(13)

$ by ~z(~J&). Theand it would not be legithte to replace v —

mathematical argument can be carried through only when Du/Dt, and so
forth are put into the form given in eqmtions (5), with the help of the

.

equation of continuity.

T-theOry and M-theory.- The above arguments also suggest that in the
4

evaluation of T = -p~v, the contribution of the low-frequency components
predominates, while that of the high-frequency components is negligible.
This would justify the application of the similarity concept to the cal-
culation of T. On the other hand, in the product v~, the high-
frequency components predominate. This suggests that ~ would be
dependent more .onthe high-frecyzencycomponents than on the low-frequency
components. Thus, the similarity concept at low frequencies, as developed
above, cannot be used for obtaining a fom for vT. The M-theory is
therefore not a direct consequence of Von K&m&’s concept of similarity.

These arguments should be somewhat modified by the fact that turbu-
lence tends to be isotropic at high frequencies. This fact strengthens
the argument for T but weakens the argument against ~. It iS pOS-
sible that the contribution to ~ is equally important from high-
frequency and low-frequency components. But there is no convincing ‘
argument to show that the high-frequency components can be entirely
neglected. To make the ideas more precise, use will nowbe made of the
correlation tensor and the spectral tensor in the discussion.

.

—.-
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For convenience,

Then, the correlation

first consider homogeneous

tensor Rik = w)

13

anisotropic turbulence.

is a function of the

relative positional vector ~Z. The spectial tensor Fik(El) stands

in Fourier transform relation to Rik:

Rik(E) =Ji!J
From these, it is”seen that

Fik(K)e-i(tcE) dT(tc) I
J

auk Jr -i(~lt) dT(K)

uJP)#P’) = Fik(~)~le
.

If one lets ~- in the formula for Rik~ it is seen that

%Uk = [[l
Fik(~) dT(~)

(15)

(16)

If a spherical coordinate system is considered in the K-space, integration
with respect to the angular variables leads to

(17)

where qik is a “correlation coefficient,”bei~ equal to unity when
i = k. Isotropy at high frequencies requires that, fOr i # k, ~ik(~)
approach zero rapidly with -CO, being substantially zero in the
viscous range.

.—— —— ----.— -—— .—. .— -
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Thus, the contribution of the low-frequency components to ~k

dominates that of the high-frequency components even to a greater extent
when i # k than when i = k. In the latter case, it is well-known
that the high-frequency components are negligible (cf. appendix B), and
this is therefore still more so in the case i # k where the factor qik
reduces the influence of the high-frequency components still further.

It is not possible to makeoa similar discussion for ~ by USiIlg
homogeneous and anisotropic turbulence, because this term is zero. How-
ever, one may write a formula analogous to equation (17) in the form

(18)

where $ikz is a dimensionless “correlation coefficient,” approaching

zero rapidly as Kern, and the factor K is s~ested by formula (15).
It till be shown in appendix B that, without the factor $ikz, the

contribution to the above integral would practically all come from the
high-frequency components. However, since ‘$ikl mt approach zero
rapidly as K~, this argument is not certain. But, at any rate,
equation (18) does not show that ~ will be essentially determined by
the low-frequency components. One may also argue as follows. The fac-

‘or ~~kz probably begins to become insignificant ohly in the R-5/3 range.

For various Reynolds numbers of turbulence, corresponding to identical

low-frequency components, the extent of the ~-5/3 range differs. Since
this range is now obtiously important for the determination of inte-
gral (18), the amount of vorticity transfer would depend on the local
Reynolds mniber of turbulence. This is another way of stating that there
is no similarity in this sense between the various points of the flow
field.

The above discussion shows that the T-theory
connection with Von K&&n’s similarity concept.

DISCUSSION

It is perhaps in order now to make a general

should be used in

survey of the present
theories uf shear flow. In contrast with the similarity theory, there
are the theories of transfer of momentum and vorticity. In comparing the
similarity theory with transfer theories, it should be noted that, although

..—.__-.
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there is formal similarity in the final formulas, there is a definite
difference in basic concept. The similarity theory does not directly
use the physical picture of the mechanism of transfer. It, however,
asserts more definitely on the nature of the turbulent fluctuations.
On the one hand, this has the advantage of leading to a formula for the
scale. On the other hand, one can apply the concepts evolved from modern
statistical theories to the theory of shear flow by following the concept
of similarity. The-present work seems to be one of the few attempts in
this dir$ct~onj and it tends to bear out the classical form of the theory
of Von Karman (T-theory). The use of Von K&m&’s concept to calculate
average quantities involving velocity derivatives (such as in the
M-theory) cannot he justified by current concepts of the statistical
theory of turbulence.

The conclusion that the T-theOry (analogousto the momentum transfer
theory) is preferable to the M-theory (analogous to the vorticity transfer
theory) perhaps requires further clarification. A great deal of work
has been done, following Taylor, which shows that the vorticity transfer
theory is better than the momentum transfer theory. The strongest case .
is perhaps the one involving joint velocity and temperature distributions
in a wake and in a jet. Whereas the mamentum transfer theory predicts
the mme distribution for velocity and temperature, the vorticity transfer
theory can account for the difference in distribution which is actually
observed experimentally. In fact, if e is the fluctuation of tempera-
ture, the transfer of heat is

H-e—v= ——12 du d~
dy dy

in either theory. The momentum transfer theory gives further

T

t-1

2dUdU—=
P -TV = 1

dy ~

while the vorticity transfer theory gives

If Z is assumed constant, this leads to

II_=l2dUdUT ~1——
P dy dy

(19)

(20)

(21)

(22)

-—–—. —— . ..— —————.—
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The difference
question.

NACA TN 2541

in the numerical factor 1/2 is the essential point in

In applying this kind of argument to the similarity theory, one
must recognize, as mentioned above, that the mechanism of transfer is
not directly used in the similarity theory. In the transfer theories,
it is natural to use the same transfer coefficient 12 dU/d~ in all
the formulas, suchas equations (20) to (22). On the l!asisof the
similarity concept,

duu’”z—
dy

According to the T-theory, then

.-. ,-, -

but nothing can be said of the
above method of testing cannot
M-theory.

It must be added that the

[ aylay

constants of proportionality. Thus, the
distinguish between the T-theOry and the

similarity theory with the for-
mula Z -U’/U” does not apply to the case of wakes and jets, because
the velocity-distribtiion curve has a point of inflection. The general
concept of similarity of low-frequency compone?rts,however, might still
apply even thou@ the scale of stilari~ in such cases is probably not
determined by the local velocity distribution. In fact, even in other
cases of shear flow, the validity of the general
similarity does not depend on the correctness of

JWsachusetts Institu%e of Technology
Cambridge, Mass., Decenher 27, 1950

—-.
considerations of
Von K&m&ts formula.
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. APPENDIX A

SYMBOLS

similarity scale of length

pressure

time

fluctuating veloci~ components in x-, y-,
respectively

Cartesian Coor-tesj x-axis in direction

macroscale of turbldence

Reynolds number of turbulence

velocity in x-direction

velocity scale

rate of dissipation

fluctuation of temperature

wave number

Taylor’s microscale of turbulence

coefficient of kinematic viscosity

turbulence vorticity components

density of fluid

shearing stress

Subsc&ipts:

z low-frequency part of fluctuations

h high-frequency part of fluctuations

Barred quantities always represent mean values;
represent fluctuations.

and z-direction,

of mean flow

primed quantities

—.
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AH?ENDIX B

MOMEI?TSOF TEE SPECTRUM OF TURBUXNC3!

As indicated in the section “Critical Discussion of Similarity
Concept from Standpoint of Modern Statistical Theories,” the relative
contribution of the low-frequency and high-frequency components to the
moments of the spectral function plays an important role in deciding
the physical concept of the mechanism of turbulence. In this section,
it &li be shown tht in the case of large
frequency contribution to the integral

In =
J

F(K)tCn
o

Reynolds numbers, the low-

dti (Al)

is much more important than the high-frequency contribution if n < 2/3,
while the reverse is true if n >2/3 (evtion (A15))0 me low fre-
quencies and the high frequencies are separated at a fairly arbitrary

point in the ~-5/3 range. In the borderline case of n = 2/3, the
relative contribution depends on where the separation of the two ranges
is made (equation (A16)).

The special cases of n = O (giving the energy) and n = 2 (giving
the dissipation) are well-known (cf. “Ixrtrodu~ion”). The case n = 1 has
been used in the section “Critical Discussion of Similarity Concept from
Standpoint of Modern Statistical Theories” to bring out the difficulties
associated with the M-theory. The case n = -1 would be of importance
in determining the macroscale. “It is clear that the macroscale would be
proportional to

r

m
-1

L= F(K)~ d~ /r F(tc)d~ (A2)
do I Jo

and is consequently a
the microscale X of

low-frequency property. This is in contrast with
Taylor. - Since A

depends on the low-frequency components
components.

The method of investigation,is the
(references 8and 9). Let IC* be some

iFIproportional tO 1./12, it

as well as on the high~fiequency

one used by Von K&n&n and Lin
frequency (as yet unspecified) in
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the range where F- E‘5/30 me ~pect~ below this frequency K* is
assumed similar with a length scale L and a velocity scale V. Above
it, the characteristic quantities
may be deBcribed as follows. For

F(R)

where the function f(X) has the

for
For

,.

are v and q. Thus, the spectrum
low frequencies,

=V?Lf(~L)

behavior

f(x) *CX
-5/3

,

large values of X, for example, of the order of
high frequencies,

F(K) = v%g(q)

where the function g(x) has the behavior

for small values of x, for

g(x) *cx-5/3

example, of the order of

In evaluating the integral (Al), qplit it up into

The low-frequency.

r “J’
m

In = F(R)~n dR + F(~)En dK
o K*

part i~ .

r

*

In,z = F(@ ti
o

.r

2*
=— Xnf(x)’dx~n o

(A3)

I

X* . K*L.

(A4)

(A5)

(A6)

*’W.

two parts:

(A7)

(A8)

.— ——.— ..—.-——.
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.

where X* if3large. The high-frequency prt is

&

9=—
L

Xng(x) ax (A9)
l-in

where # is small. To get the order of magnitude of the integrals,
use is made of e~tions (A4) and (A6). Thus, for n >2/3,

J’
X*

Jn,Z = #f(x) ax “
o

The first integral maybe approximated by letting the upper limit go to
infinity, and then

,

[

*

Jn,2 = x%(x) ax
o

s4_(x*)++ o(1)
“n-—

3

(All)

In the case n < 2/3, in%egral (A1O) is convergent as X*~. Thus,

write .

rx%(x)‘=l’x”f(x)YLx+x)-el a++(fi)n-;

—.. —
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. which leads to the same answer (All). Similarly,

J
m n-~

J @g(x) dxn,h = =~(fi) 3+0(1) for n~2/3 (A12)
+

‘-3

The ratio of the two integrals Jn,Z and

Jn,1I‘njh r-=o (x*)
‘-%

/
‘n,l ‘n,h = 0

Jn,h iS

On the other hand, from equations (A3) to (A6),

v’% . c(fi)-5’3

so that

1/3
VL

()
-=—
v ~

()
p 1/3,

‘z

therefore

(A13)

(A14)

I

1

n,z/~,h=OL@~%~ n>: ‘

[(!
-2 (AU)

I
I

n,z~,h=o(~)-n~ n<$

These are the statements made at the beginning of this section.

-—— —— .. .———
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In the case n = 2/3, the above type of arguments give

and the ratio is

which depends on the choice of the frequency tc*.

NACA TN 2541

(A16)

—— ——-——-——- .-
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